Generalized solutions to models of compressible viscous fluids
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F21%3A00535783" target="_blank" >RIV/67985840:_____/21:00535783 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.3934/dcds.2020345" target="_blank" >http://dx.doi.org/10.3934/dcds.2020345</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3934/dcds.2020345" target="_blank" >10.3934/dcds.2020345</a>
Alternative languages
Result language
angličtina
Original language name
Generalized solutions to models of compressible viscous fluids
Original language description
We propose a new approach to models of general compressible viscous fluids based on the concept of dissipative solutions. These are weak solutions satisfying the underlying equations modulo a defect measure. A dissipative solution coincides with the strong solution as long as the latter exists (weak–strong uniqueness) and they solve the problem in the classical sense as soon as they are smooth (compatibility). We consider general models of compressible viscous fluids with non–linear viscosity tensor and non–homogeneous boundary conditions, for which the problem of existence of global–in–time weak/strong solutions is largely open.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Discrete and Continuous Dynamical Systems
ISSN
1078-0947
e-ISSN
1553-5231
Volume of the periodical
41
Issue of the periodical within the volume
1
Country of publishing house
US - UNITED STATES
Number of pages
28
Pages from-to
1-28
UT code for WoS article
000591602300002
EID of the result in the Scopus database
2-s2.0-85096764775