Existence of dissipative (and weak) solutions for models of general compressible viscous fluids with linear pressure
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F22%3A00557840" target="_blank" >RIV/67985840:_____/22:00557840 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1007/s00021-022-00688-1" target="_blank" >https://doi.org/10.1007/s00021-022-00688-1</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00021-022-00688-1" target="_blank" >10.1007/s00021-022-00688-1</a>
Alternative languages
Result language
angličtina
Original language name
Existence of dissipative (and weak) solutions for models of general compressible viscous fluids with linear pressure
Original language description
In this work we will focus on the existence of dissipative solutions for a system describing a general compressible viscous fluid in the case of the pressure being a linear function of the density and the viscous stress tensor being a non-linear function of the symmetric velocity gradient. Moreover, we will study under which conditions it would be possible to get the existence of weak solutions.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA21-02411S" target="_blank" >GA21-02411S: Solving ill posed problems in the dynamics of compressible fluids</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Mathematical Fluid Mechanics
ISSN
1422-6928
e-ISSN
1422-6952
Volume of the periodical
24
Issue of the periodical within the volume
2
Country of publishing house
CH - SWITZERLAND
Number of pages
22
Pages from-to
56
UT code for WoS article
000787766500001
EID of the result in the Scopus database
2-s2.0-85128950023