All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

On weak-strong uniqueness for the compressible Navier-Stokes system with non-monotone pressure law

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F19%3A00503970" target="_blank" >RIV/67985840:_____/19:00503970 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1080/03605302.2018.1543319" target="_blank" >http://dx.doi.org/10.1080/03605302.2018.1543319</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1080/03605302.2018.1543319" target="_blank" >10.1080/03605302.2018.1543319</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    On weak-strong uniqueness for the compressible Navier-Stokes system with non-monotone pressure law

  • Original language description

    We show the weak–strong uniqueness property for the compressible Navier–Stokes system with general non-monotone pressure law. A weak solution coincides with the strong solution emanating from the same initial data as long as the latter solution exists.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GA18-05974S" target="_blank" >GA18-05974S: Oscillations and concentrations versus stability in the equations of mathematical fluid dynamics</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Communications in Partial Differential Equations

  • ISSN

    0360-5302

  • e-ISSN

  • Volume of the periodical

    44

  • Issue of the periodical within the volume

    3

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    8

  • Pages from-to

    271-278

  • UT code for WoS article

    000465165100003

  • EID of the result in the Scopus database

    2-s2.0-85060351615