A numerical approach for the existence of dissipative weak solutions to a compressible two-fluid model
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F22%3A00559103" target="_blank" >RIV/67985840:_____/22:00559103 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1007/s00021-022-00706-2" target="_blank" >https://doi.org/10.1007/s00021-022-00706-2</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00021-022-00706-2" target="_blank" >10.1007/s00021-022-00706-2</a>
Alternative languages
Result language
angličtina
Original language name
A numerical approach for the existence of dissipative weak solutions to a compressible two-fluid model
Original language description
As an extension of the recent work of Novotný et al. (J Elliptic Parabol Equ 7:537–570 2021), we study the dissipative weak solutions to a compressible two-fluid model system describing the time evolution of two fluid flows sharing the same velocity field in multi-dimensional spaces. We prove the existence of dissipative weak solutions alternatively via a finite volume approximation. Further, we apply the weak–strong uniqueness principle to show the convergence of the finite volume approximation towards the strong solution on the lifespan of the latter.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Mathematical Fluid Mechanics
ISSN
1422-6928
e-ISSN
1422-6952
Volume of the periodical
24
Issue of the periodical within the volume
3
Country of publishing house
CH - SWITZERLAND
Number of pages
17
Pages from-to
78
UT code for WoS article
000820239100001
EID of the result in the Scopus database
2-s2.0-85133403565