All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

A numerical approach for the existence of dissipative weak solutions to a compressible two-fluid model

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F22%3A00559103" target="_blank" >RIV/67985840:_____/22:00559103 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1007/s00021-022-00706-2" target="_blank" >https://doi.org/10.1007/s00021-022-00706-2</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s00021-022-00706-2" target="_blank" >10.1007/s00021-022-00706-2</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    A numerical approach for the existence of dissipative weak solutions to a compressible two-fluid model

  • Original language description

    As an extension of the recent work of Novotný et al. (J Elliptic Parabol Equ 7:537–570 2021), we study the dissipative weak solutions to a compressible two-fluid model system describing the time evolution of two fluid flows sharing the same velocity field in multi-dimensional spaces. We prove the existence of dissipative weak solutions alternatively via a finite volume approximation. Further, we apply the weak–strong uniqueness principle to show the convergence of the finite volume approximation towards the strong solution on the lifespan of the latter.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Mathematical Fluid Mechanics

  • ISSN

    1422-6928

  • e-ISSN

    1422-6952

  • Volume of the periodical

    24

  • Issue of the periodical within the volume

    3

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    17

  • Pages from-to

    78

  • UT code for WoS article

    000820239100001

  • EID of the result in the Scopus database

    2-s2.0-85133403565