On oscillatory solutions to the complete Euler system
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F20%3A00523994" target="_blank" >RIV/67985840:_____/20:00523994 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1016/j.jde.2020.01.018" target="_blank" >https://doi.org/10.1016/j.jde.2020.01.018</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jde.2020.01.018" target="_blank" >10.1016/j.jde.2020.01.018</a>
Alternative languages
Result language
angličtina
Original language name
On oscillatory solutions to the complete Euler system
Original language description
The Euler system in fluid dynamics is a model of a compressible inviscid fluid incorporating the three basic physical principles: Conservation of mass, momentum, and energy. We show that the Cauchy problem is basically ill-posed for the L∞-initial data in the class of weak entropy solutions. As a consequence, there are infinitely many measure-valued solutions for a vast set of initial data. Finally, using the concept of relative energy, we discuss a singular limit problem for the measure-valued solutions, where the Mach and Froude number are proportional to a small parameter.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Differential Equations
ISSN
0022-0396
e-ISSN
—
Volume of the periodical
269
Issue of the periodical within the volume
2
Country of publishing house
US - UNITED STATES
Number of pages
23
Pages from-to
1521-1543
UT code for WoS article
000530702100016
EID of the result in the Scopus database
2-s2.0-85078342081