All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

On oscillatory solutions to the complete Euler system

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F20%3A00523994" target="_blank" >RIV/67985840:_____/20:00523994 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1016/j.jde.2020.01.018" target="_blank" >https://doi.org/10.1016/j.jde.2020.01.018</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.jde.2020.01.018" target="_blank" >10.1016/j.jde.2020.01.018</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    On oscillatory solutions to the complete Euler system

  • Original language description

    The Euler system in fluid dynamics is a model of a compressible inviscid fluid incorporating the three basic physical principles: Conservation of mass, momentum, and energy. We show that the Cauchy problem is basically ill-posed for the L∞-initial data in the class of weak entropy solutions. As a consequence, there are infinitely many measure-valued solutions for a vast set of initial data. Finally, using the concept of relative energy, we discuss a singular limit problem for the measure-valued solutions, where the Mach and Froude number are proportional to a small parameter.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Differential Equations

  • ISSN

    0022-0396

  • e-ISSN

  • Volume of the periodical

    269

  • Issue of the periodical within the volume

    2

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    23

  • Pages from-to

    1521-1543

  • UT code for WoS article

    000530702100016

  • EID of the result in the Scopus database

    2-s2.0-85078342081