All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Navier-Stokes-Fourier system with Dirichlet boundary conditions

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F22%3A00560286" target="_blank" >RIV/67985840:_____/22:00560286 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1080/00036811.2021.1992396" target="_blank" >https://doi.org/10.1080/00036811.2021.1992396</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1080/00036811.2021.1992396" target="_blank" >10.1080/00036811.2021.1992396</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Navier-Stokes-Fourier system with Dirichlet boundary conditions

  • Original language description

    We consider the Navier–Stokes–Fourier system describing the motion of a compressible, viscous, and heat-conducting fluid in a bounded domain (Formula presented.), d = 2, 3, with general non-homogeneous Dirichlet boundary conditions for the velocity and the absolute temperature, with the associated boundary conditions for the density on the inflow part. We introduce a new concept of a weak solution based on the satisfaction of the entropy inequality together with a balance law for the ballistic energy. We show the weak–strong uniqueness principle as well as the existence of global-in-time solutions.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GA18-05974S" target="_blank" >GA18-05974S: Oscillations and concentrations versus stability in the equations of mathematical fluid dynamics</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Applicable Analysis

  • ISSN

    0003-6811

  • e-ISSN

    1563-504X

  • Volume of the periodical

    101

  • Issue of the periodical within the volume

    12

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    19

  • Pages from-to

    4076-4094

  • UT code for WoS article

    000710037500001

  • EID of the result in the Scopus database

    2-s2.0-85117503021