On the compressible micropolar fluids in a time-dependent domain
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F22%3A00562907" target="_blank" >RIV/67985840:_____/22:00562907 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1007/s10231-022-01218-6" target="_blank" >https://doi.org/10.1007/s10231-022-01218-6</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s10231-022-01218-6" target="_blank" >10.1007/s10231-022-01218-6</a>
Alternative languages
Result language
angličtina
Original language name
On the compressible micropolar fluids in a time-dependent domain
Original language description
We investigate compressible micropolar fluids on a time-dependent domain with slip boundary conditions. Our contribution in this paper is threefold. Firstly, we establish the local existence of the strong solution. Secondly, the global existence of weak solutions is shown. The third one is the weak-strong uniqueness principle for slip boundary conditions. There are several new ideas developed by us to overcome the difficulties caused by the coupled terms and slip boundary conditions.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA19-04243S" target="_blank" >GA19-04243S: Partial differential equations in mechanics and thermodynamics of fluids</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Annali di Matematica Pura ed Applicata
ISSN
0373-3114
e-ISSN
1618-1891
Volume of the periodical
201
Issue of the periodical within the volume
6
Country of publishing house
DE - GERMANY
Number of pages
63
Pages from-to
2733-2795
UT code for WoS article
000795634200001
EID of the result in the Scopus database
2-s2.0-85130142839