All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Local existence of strong solutions and weak-strong uniqueness for the compressible Navier-Stokes system on moving domains

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F20%3A00532706" target="_blank" >RIV/67985840:_____/20:00532706 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1017/prm.2018.165" target="_blank" >https://doi.org/10.1017/prm.2018.165</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1017/prm.2018.165" target="_blank" >10.1017/prm.2018.165</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Local existence of strong solutions and weak-strong uniqueness for the compressible Navier-Stokes system on moving domains

  • Original language description

    We consider the compressible Navier–Stokes system on time-dependent domains with prescribed motion of the boundary. For both the no-slip boundary conditions as well as slip boundary conditions we prove local-in-time existence of strong solutions. These results are obtained using a transformation of the problem to a fixed domain and an existence theorem for Navier–Stokes like systems with lower order terms and perturbed boundary conditions. We also show the weak–strong uniqueness principle for slip boundary conditions which remained so far open question.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Proceedings of the Royal Society of Edinburgh. A - Mathematics

  • ISSN

    0308-2105

  • e-ISSN

  • Volume of the periodical

    150

  • Issue of the periodical within the volume

    5

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    46

  • Pages from-to

    2255-2300

  • UT code for WoS article

    000572396300004

  • EID of the result in the Scopus database

    2-s2.0-85063743789