Local existence of strong solutions and weak-strong uniqueness for the compressible Navier-Stokes system on moving domains
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F20%3A00532706" target="_blank" >RIV/67985840:_____/20:00532706 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1017/prm.2018.165" target="_blank" >https://doi.org/10.1017/prm.2018.165</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1017/prm.2018.165" target="_blank" >10.1017/prm.2018.165</a>
Alternative languages
Result language
angličtina
Original language name
Local existence of strong solutions and weak-strong uniqueness for the compressible Navier-Stokes system on moving domains
Original language description
We consider the compressible Navier–Stokes system on time-dependent domains with prescribed motion of the boundary. For both the no-slip boundary conditions as well as slip boundary conditions we prove local-in-time existence of strong solutions. These results are obtained using a transformation of the problem to a fixed domain and an existence theorem for Navier–Stokes like systems with lower order terms and perturbed boundary conditions. We also show the weak–strong uniqueness principle for slip boundary conditions which remained so far open question.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Proceedings of the Royal Society of Edinburgh. A - Mathematics
ISSN
0308-2105
e-ISSN
—
Volume of the periodical
150
Issue of the periodical within the volume
5
Country of publishing house
GB - UNITED KINGDOM
Number of pages
46
Pages from-to
2255-2300
UT code for WoS article
000572396300004
EID of the result in the Scopus database
2-s2.0-85063743789