All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

On the vanishing viscosity limit of strong solutions of the Navier-Stokes equation with slip boundary conditions

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F11%3A00375190" target="_blank" >RIV/67985840:_____/11:00375190 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    On the vanishing viscosity limit of strong solutions of the Navier-Stokes equation with slip boundary conditions

  • Original language description

    We recall the local in time existence results for strong solutions of the Navier-Stokes equation with the no-slip and three types of slip boundary conditions. Then we focus on the question of the zero viscosity limit. We provide a brief survey of selected related papers and present in greater detail three results on the existence of a viscosity continuous (up to the limit case nu=0) family of strong solutions of the Navier-Stokes or Euler equations with the three types of slip boundary conditions.

  • Czech name

  • Czech description

Classification

  • Type

    C - Chapter in a specialist book

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/IAA100190905" target="_blank" >IAA100190905: Dynamical properties of the Navier-Stokes and related equations</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)

Others

  • Publication year

    2011

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Book/collection name

    Mathematical analysis on the Navier-Stokes equations and related topics, past and future

  • ISBN

    978-4-7625-0460-0

  • Number of pages of the result

    21

  • Pages from-to

    130-150

  • Number of pages of the book

    241

  • Publisher name

    Gakkótosho Co. LTD

  • Place of publication

    Tokyo

  • UT code for WoS chapter