All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Euler system with a polytropic equation of state as a vanishing viscosity limit

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F22%3A00558263" target="_blank" >RIV/67985840:_____/22:00558263 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1007/s00021-022-00690-7" target="_blank" >https://doi.org/10.1007/s00021-022-00690-7</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s00021-022-00690-7" target="_blank" >10.1007/s00021-022-00690-7</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Euler system with a polytropic equation of state as a vanishing viscosity limit

  • Original language description

    We consider the Euler system of gas dynamics endowed with the incomplete (e-rho-p) equation of state relating the internal energy a to the mass density rho and the pressure p. We show that any sufficiently smooth solution can be recovered as a vanishing viscosity-heat conductivity limit of the Navier-Stokes-Fourier system with a properly defined temperature. The result is unconditional in the case of the Navier type (slip) boundary conditions and extends to the no-slip condition for the velocity under some extra hypotheses of Kato's type concerning the behavior of the fluid in the boundary layer.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GA21-02411S" target="_blank" >GA21-02411S: Solving ill posed problems in the dynamics of compressible fluids</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Mathematical Fluid Mechanics

  • ISSN

    1422-6928

  • e-ISSN

    1422-6952

  • Volume of the periodical

    24

  • Issue of the periodical within the volume

    3

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    22

  • Pages from-to

    67

  • UT code for WoS article

    000805234800003

  • EID of the result in the Scopus database

    2-s2.0-85131130964