WEAK SOLUTIONS TO EQUATIONS OF STEADY COMPRESSIBLE HEAT CONDUCTING FLUIDS
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F10%3A10051958" target="_blank" >RIV/00216208:11320/10:10051958 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
WEAK SOLUTIONS TO EQUATIONS OF STEADY COMPRESSIBLE HEAT CONDUCTING FLUIDS
Original language description
We consider the steady compressible Navier--Stokes--Fourier system in a bounded three-dimensional domain. We prove the existence of a solution for arbitrarily large data under the assumption that the pressure $p(rho,theta) sim rho theta + rho^gamma$ for $gamma }frac 73$, assuming either the slip or no-slip boundary condition for the velocity and the Newton boundary condition for the temperature. The regularity of solutions is determined by the basic energy estimates, constructed for the system.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2010
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Mathematical Models and Methods in Applied Sciences
ISSN
0218-2025
e-ISSN
—
Volume of the periodical
20
Issue of the periodical within the volume
5
Country of publishing house
SG - SINGAPORE
Number of pages
29
Pages from-to
—
UT code for WoS article
000280853000005
EID of the result in the Scopus database
—