Steady compressible Navier--Stokes--Fourier system in two space dimensions
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F10%3A10051960" target="_blank" >RIV/00216208:11320/10:10051960 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Steady compressible Navier--Stokes--Fourier system in two space dimensions
Original language description
We study steady flow of a compressible heat conducting viscous fluid in a bounded two-dimensional domain, described by the Navier--Stokes--Fourier system. We assume that the pressure is given by the constitutive equation $p(rho, theta) sim rho^gamma+ rho theta$, where $rho$ is the density and $theta$ is the temperature. For $gamma } 2$, we prove existence of a weak solution to these equations without any assumption on the smallness of the data. The proof uses special approximation of the original problem, which guarantees the pointwise boundedness of the density. Thus we get a solution with density in $L^infty (Omega)$ and temperature and velocity in $W^{1,q} (Omega)$ $forall q { infty$.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2010
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Commentationes Mathematicae Universitatis Carolinae
ISSN
0010-2628
e-ISSN
—
Volume of the periodical
51
Issue of the periodical within the volume
4
Country of publishing house
CZ - CZECH REPUBLIC
Number of pages
27
Pages from-to
—
UT code for WoS article
—
EID of the result in the Scopus database
—