Asymptotic behavior of positive solutions of a discrete delayed equation
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F17%3APU122815" target="_blank" >RIV/00216305:26220/17:PU122815 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Asymptotic behavior of positive solutions of a discrete delayed equation
Original language description
Denote ${Z}_s^q:={s,s+1,dots,q}$ where $s$ and $q$ are integers such that $sleq q$. Similarly a set ${Z}_s^{infty}$ is defined. In the paper the scalar discrete equation with delay begin{equation} Delta x(n)=-left(frac{k}{k+1}right)^k frac{1}{k+1} left[1+omega(n)right] x(n-k) end{equation} is considered where function $omega colon {Z}_a^{infty}toR $ has a special form, $kge1$ is fixed integer, $nin {Z}_a^{infty}$, and $a$ is a whole number. We prove that there exists a positive solution $x=x(n)$ of the equation and give its upper estimation.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Aplimat 2017, proceedings
ISBN
978-80-227-4650-2
ISSN
—
e-ISSN
—
Number of pages
6
Pages from-to
63-68
Publisher name
STU Bratislava
Place of publication
Bratislava
Event location
Bratislava
Event date
Jan 31, 2017
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—