All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Maclaurin series for sin_p with p an Integer greater than 2

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F18%3A43951595" target="_blank" >RIV/49777513:23520/18:43951595 - isvavai.cz</a>

  • Result on the web

    <a href="https://ejde.math.txstate.edu/" target="_blank" >https://ejde.math.txstate.edu/</a>

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Maclaurin series for sin_p with p an Integer greater than 2

  • Original language description

    We find an explicit formula for the coefficients $alpha_n$, $n in mathbb{N}$, of the generalized Maclaurin series for $sin_p$ provided $p &gt; 2$ is an integer. Our method is based on an expression of the $n$-th derivative of $sin_p$ in the form [ sum_{k = 0}^{2^{n - 2} - 1} a_{k,n} sin_p^{p - 1}(x)cos_p^{2 - p}(x),, quad xin left(0, frac{pi_p}{2}right), ] where $cos_p$ stands for the first derivative of $sin_p$. The formula allows us to compute the nonzero coefficients [ alpha_n = frac{lim_{x to 0+} sin_p^{(np + 1)}(x)}{(np + 1)!},. ]

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10102 - Applied mathematics

Result continuities

  • Project

    <a href="/en/project/LO1506" target="_blank" >LO1506: Sustainability support of the centre NTIS - New Technologies for the Information Society</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2018

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Electronic Journal of Differential Equations

  • ISSN

    1072-6691

  • e-ISSN

  • Volume of the periodical

    135

  • Issue of the periodical within the volume

    JUL 1 2018

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    11

  • Pages from-to

    1-11

  • UT code for WoS article

    000437227300001

  • EID of the result in the Scopus database