On expressible sets for products.
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17610%2F14%3AA15014YS" target="_blank" >RIV/61988987:17610/14:A15014YS - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
On expressible sets for products.
Original language description
For a sequence of real numbers $an$ we call $$E_{Pi} an = biggl{ prod _{n=1}^infty left (1+ {frac{1}{a_n c_n}}right ) : c_n in mathbb Z^+ biggr},$$ its $Pi$-expressible set. In this paper we calculate $E_{Pi}an$ under various hypothesis on ${ a_n}_{n=1}^{infty}$. Where this is not possible we give some partial information on its contents. This investigation is a sequel to related investigations on the $Sigma$-expressible sets of sums.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Others
Publication year
2014
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Periodica Mathematica Hungarica
ISSN
0031-5303
e-ISSN
—
Volume of the periodical
69
Issue of the periodical within the volume
2
Country of publishing house
HU - HUNGARY
Number of pages
7
Pages from-to
199-206
UT code for WoS article
—
EID of the result in the Scopus database
—