EXISTENCE AND REGULARITY OF SOLUTIONS TO THE LERAY-alpha MODEL WITH NAVIER SLIP BOUNDARY CONDITIONS
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F16%3A10335254" target="_blank" >RIV/00216208:11320/16:10335254 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
EXISTENCE AND REGULARITY OF SOLUTIONS TO THE LERAY-alpha MODEL WITH NAVIER SLIP BOUNDARY CONDITIONS
Original language description
We establish the existence and regularity of a unique weak solution to turbulent flows in a bounded domain Omega subset of R-3 governed by the Leray-alpha model with Navier slip boundary condition for the velocity. Furthermore, we show that when the filter coefficient alpha tends to zero, these weak solutions converge to a suitable weak solution to the incompressible Navier Stokes equations subject to the Navier boundary conditions. Finally, we discuss the relation between the Leray-alpha model and the Navier-Stokes equations with homogeneous Dirichlet boundary condition.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA201%2F09%2F0917" target="_blank" >GA201/09/0917: Mathematical and computer analysis of the evolution processes in nonlinear viscoelastic fluid-like materials</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2016
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Electronic Journal of Differential Equations
ISSN
1072-6691
e-ISSN
—
Volume of the periodical
2016
Issue of the periodical within the volume
1
Country of publishing house
US - UNITED STATES
Number of pages
13
Pages from-to
—
UT code for WoS article
000382919100001
EID of the result in the Scopus database
2-s2.0-84984846847