On the number of binary signed digit representations of a given weight
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F15%3A10317294" target="_blank" >RIV/00216208:11320/15:10317294 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
On the number of binary signed digit representations of a given weight
Original language description
Our paper is motivated by differential cryptanalysis of hash functions. We give an upper bound on the number of binary signed digit representations (BSDR's) of a given weight.Our result improves the upper bound on the number of BSDR's with minimal weightstated by Grabner and Heuberger and introduce a new recursive upper bound for the number of BSDR's of any given weight.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA201%2F09%2F0816" target="_blank" >GA201/09/0816: Algebraic Methods in the Representation Theory (Approximations, Realizations, and Constraints)</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2015
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Commentationes Mathematicae Universitatis Carolinae
ISSN
0010-2628
e-ISSN
—
Volume of the periodical
2015
Issue of the periodical within the volume
56,3
Country of publishing house
CZ - CZECH REPUBLIC
Number of pages
20
Pages from-to
287-306
UT code for WoS article
—
EID of the result in the Scopus database
2-s2.0-84940393521