Bounding the number of cycles in a graph in terms of its degree sequence
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10417000" target="_blank" >RIV/00216208:11320/21:10417000 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=biqxmXZ9gG" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=biqxmXZ9gG</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.ejc.2020.103206" target="_blank" >10.1016/j.ejc.2020.103206</a>
Alternative languages
Result language
angličtina
Original language name
Bounding the number of cycles in a graph in terms of its degree sequence
Original language description
We give an upper bound on the number of cycles in a simple graph in terms of its degree sequence, and apply this bound to resolve several conjectures of Király (2009) and Arman and Tsaturian (2017) and to improve upper bounds on the maximum number of cycles in a planar graph.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
European Journal of Combinatorics
ISSN
0195-6698
e-ISSN
—
Volume of the periodical
91
Issue of the periodical within the volume
January
Country of publishing house
GB - UNITED KINGDOM
Number of pages
16
Pages from-to
103206
UT code for WoS article
000579842800008
EID of the result in the Scopus database
2-s2.0-85089505487