All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Bounding the number of cycles in a graph in terms of its degree sequence

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10417000" target="_blank" >RIV/00216208:11320/21:10417000 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=biqxmXZ9gG" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=biqxmXZ9gG</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.ejc.2020.103206" target="_blank" >10.1016/j.ejc.2020.103206</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Bounding the number of cycles in a graph in terms of its degree sequence

  • Original language description

    We give an upper bound on the number of cycles in a simple graph in terms of its degree sequence, and apply this bound to resolve several conjectures of Király (2009) and Arman and Tsaturian (2017) and to improve upper bounds on the maximum number of cycles in a planar graph.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    European Journal of Combinatorics

  • ISSN

    0195-6698

  • e-ISSN

  • Volume of the periodical

    91

  • Issue of the periodical within the volume

    January

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    16

  • Pages from-to

    103206

  • UT code for WoS article

    000579842800008

  • EID of the result in the Scopus database

    2-s2.0-85089505487