All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Multi-Objective Genetic Programming for Dataset Similarity Induction

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F15%3A10317478" target="_blank" >RIV/00216208:11320/15:10317478 - isvavai.cz</a>

  • Alternative codes found

    RIV/67985807:_____/15:00455776

  • Result on the web

    <a href="http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=7376798" target="_blank" >http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=7376798</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/SSCI.2015.222" target="_blank" >10.1109/SSCI.2015.222</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Multi-Objective Genetic Programming for Dataset Similarity Induction

  • Original language description

    Metalearning -- the recommendation of a suitable machine learning technique for a given dataset -- relies on the concept of similarity between datasets. Traditionally, similarity measures have been constructed manually, and thus could not precisely graspthe complex relationship among the different features of the datasets. Recently, we have used an attribute alignment technique combined with genetic programming to obtain more fine-grained and trainable dataset similarity measure. In this paper, we propose an approach based on multi-objective genetic programming for evolving an attribute similarity function. Multi-objective optimization is used to encourage some of the metric properties, thus contributing to the generalization abilities of the similarity function being evolved. Experiments are performed on the data extracted from the OpenML repository and their results are compared to the baseline algorithm.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

    IN - Informatics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/GA15-19877S" target="_blank" >GA15-19877S: Automated Knowledge and Plan Modeling for Autonomous Robots</a><br>

  • Continuities

    S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2015

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Computational Intelligence, 2015 IEEE Symposium Series on

  • ISBN

    978-1-4799-7560-0

  • ISSN

  • e-ISSN

  • Number of pages

    7

  • Pages from-to

    1576-1582

  • Publisher name

    IEEE

  • Place of publication

    New York, USA

  • Event location

    Kapské město, Jihoafrická republika

  • Event date

    Dec 7, 2015

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article