All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Co-evolutionary genetic programming for dataset similarity induction

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F15%3A10317487" target="_blank" >RIV/00216208:11320/15:10317487 - isvavai.cz</a>

  • Alternative codes found

    RIV/67985807:_____/15:00459144

  • Result on the web

    <a href="http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7257020" target="_blank" >http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7257020</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/CEC.2015.7257020" target="_blank" >10.1109/CEC.2015.7257020</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Co-evolutionary genetic programming for dataset similarity induction

  • Original language description

    Metalearning deals with an important problem in machine-learning, namely selecting the right techniques to model the data at hand. In most of the metalearning approaches, a notion of similarity between datasets is needed. Our approach derives the similarity measure by combining arbitrary attribute similarity functions ordered by the optimal attribute assignment. In this paper, we propose a genetic programming based approach to the evolution of an attribute similarity inducing function. The function is composed of two parts - one describes the similarity of categorical attributes, the other describes the similarity of numerical attributes. Co-evolution is used to put these two parts together to form the similarity function. We use a repairing approach to guarantee some of the metric features for this function, and also discuss which of these features are important in metalearning.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

    IN - Informatics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/GA15-19877S" target="_blank" >GA15-19877S: Automated Knowledge and Plan Modeling for Autonomous Robots</a><br>

  • Continuities

    S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2015

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Evolutionary Computation (CEC), 2015 IEEE Congress on

  • ISBN

    978-1-4799-7492-4

  • ISSN

  • e-ISSN

  • Number of pages

    7

  • Pages from-to

    1160-1166

  • Publisher name

    IEEE

  • Place of publication

    Neuveden

  • Event location

    Sendai, Japonsko

  • Event date

    May 25, 2015

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article