Hypervolume-Based Surrogate Model for MO-CMA-ES
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F15%3A10317485" target="_blank" >RIV/00216208:11320/15:10317485 - isvavai.cz</a>
Result on the web
<a href="http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7372189" target="_blank" >http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7372189</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/ICTAI.2015.93" target="_blank" >10.1109/ICTAI.2015.93</a>
Alternative languages
Result language
angličtina
Original language name
Hypervolume-Based Surrogate Model for MO-CMA-ES
Original language description
Evolutionary algorithms are among the best multi-objective optimizers, but the large number of objective function evaluations they require makes it hard to use them to solve certain real-life tasks. In this work we present a surrogate-based local searchfor the multi-objective covariance matrix adaption evolution strategy (MO-CMA-ES). The local search is based on the estimation of hypervolume contribution of each individual and maximization of this contribution. This work extends our previous work and makes such surrogate models applicable to problems with more than two objectives. Moreover, it uses a unique feature of MO-CMA-ES to make the local search more effective. The results indicate that the algorithm can find solutions of the same quality as MO-CMA-ES while using 30-50 percent less objective function evaluations.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
IN - Informatics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA15-19877S" target="_blank" >GA15-19877S: Automated Knowledge and Plan Modeling for Autonomous Robots</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2015
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Tools with Artificial Intelligence (ICTAI), 2015 IEEE 27th International Conference on
ISBN
—
ISSN
1082-3409
e-ISSN
—
Number of pages
8
Pages from-to
604-611
Publisher name
IEEE
Place of publication
Neuveden
Event location
Vietri sul Mare, Itálie
Event date
Nov 9, 2015
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—