All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Rooted level-disjoint partitions of Cartesian products

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F15%3A10317837" target="_blank" >RIV/00216208:11320/15:10317837 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1016/j.amc.2015.05.059" target="_blank" >http://dx.doi.org/10.1016/j.amc.2015.05.059</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.amc.2015.05.059" target="_blank" >10.1016/j.amc.2015.05.059</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Rooted level-disjoint partitions of Cartesian products

  • Original language description

    In interconnection networks one often needs to broadcast multiple messages in parallel from a single source so that the load at each node is minimal. With this motivation we study a new concept of rooted level-disjoint partitions of graphs. In particular, we develop a general construction of level-disjoint partitions for Cartesian products of graphs that is efficient both in the number of level partitions as in the maximal height. As an example, we show that the hypercube Qn for every dimension n = 3 .2^i or n = 4 . 2^i where i }= 0 has n level-disjoint partitions with the same root and with maximal height 3n - 2. Both the number of such partitions and the maximal height are optimal. Moreover, we conjecture that this holds for any n }= 3.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/GA14-10799S" target="_blank" >GA14-10799S: Hybercubic, graph and hypergraph structures</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2015

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Applied Mathematics and Computation

  • ISSN

    0096-3003

  • e-ISSN

  • Volume of the periodical

    266

  • Issue of the periodical within the volume

    8. června

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    15

  • Pages from-to

    244-258

  • UT code for WoS article

    000359300100020

  • EID of the result in the Scopus database

    2-s2.0-84930666324