Rooted level-disjoint partitions of Cartesian products
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F15%3A10317837" target="_blank" >RIV/00216208:11320/15:10317837 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1016/j.amc.2015.05.059" target="_blank" >http://dx.doi.org/10.1016/j.amc.2015.05.059</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.amc.2015.05.059" target="_blank" >10.1016/j.amc.2015.05.059</a>
Alternative languages
Result language
angličtina
Original language name
Rooted level-disjoint partitions of Cartesian products
Original language description
In interconnection networks one often needs to broadcast multiple messages in parallel from a single source so that the load at each node is minimal. With this motivation we study a new concept of rooted level-disjoint partitions of graphs. In particular, we develop a general construction of level-disjoint partitions for Cartesian products of graphs that is efficient both in the number of level partitions as in the maximal height. As an example, we show that the hypercube Qn for every dimension n = 3 .2^i or n = 4 . 2^i where i }= 0 has n level-disjoint partitions with the same root and with maximal height 3n - 2. Both the number of such partitions and the maximal height are optimal. Moreover, we conjecture that this holds for any n }= 3.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA14-10799S" target="_blank" >GA14-10799S: Hybercubic, graph and hypergraph structures</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2015
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Applied Mathematics and Computation
ISSN
0096-3003
e-ISSN
—
Volume of the periodical
266
Issue of the periodical within the volume
8. června
Country of publishing house
US - UNITED STATES
Number of pages
15
Pages from-to
244-258
UT code for WoS article
000359300100020
EID of the result in the Scopus database
2-s2.0-84930666324