All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

A remark on the approximation theorems of Whitney and Carleman-Scheinberg

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F15%3A10317849" target="_blank" >RIV/00216208:11320/15:10317849 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.14712/1213-7243.015.101" target="_blank" >http://dx.doi.org/10.14712/1213-7243.015.101</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.14712/1213-7243.015.101" target="_blank" >10.14712/1213-7243.015.101</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    A remark on the approximation theorems of Whitney and Carleman-Scheinberg

  • Original language description

    We show that a $C^k$-smooth mapping on an open subset can be approximated in a fine topology and together with its derivatives by a restriction of a holomorphic mapping with explicitly described domain. As a corollary we obtain a generalisation of the Carleman-Scheinberg theorem on approximation by entire functions.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/GAP201%2F11%2F0345" target="_blank" >GAP201/11/0345: Nonlinear functional analysis</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2015

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Commentationes Mathematicae Universitatis Carolinae

  • ISSN

    0010-2628

  • e-ISSN

  • Volume of the periodical

    56

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    CZ - CZECH REPUBLIC

  • Number of pages

    6

  • Pages from-to

    1-6

  • UT code for WoS article

  • EID of the result in the Scopus database

    2-s2.0-84924576986