A new proof of Ajtai's completeness theorem for nonstandard finite structures
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F15%3A10317970" target="_blank" >RIV/00216208:11320/15:10317970 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/s00153-014-0416-5" target="_blank" >http://dx.doi.org/10.1007/s00153-014-0416-5</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00153-014-0416-5" target="_blank" >10.1007/s00153-014-0416-5</a>
Alternative languages
Result language
angličtina
Original language name
A new proof of Ajtai's completeness theorem for nonstandard finite structures
Original language description
Ajtai's completeness theorem roughly states that a countable structure A coded in a model of arithmetic can be end-extended and expanded to a model of a given theory G if and only if a contradiction cannot be derived by a (possibly nonstandard) proof from G plus the diagram of A, provided that the proof is definable in A and contains only formulas of a standard length. The existence of such model extensions is closely related to questions in complexity theory. In this paper we give a new proof of Ajtai's theorem using basic techniques of model theory.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2015
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Archive for Mathematical Logic
ISSN
0933-5846
e-ISSN
—
Volume of the periodical
54
Issue of the periodical within the volume
3-4
Country of publishing house
DE - GERMANY
Number of pages
12
Pages from-to
413-424
UT code for WoS article
000351511600006
EID of the result in the Scopus database
2-s2.0-84925503132