Some analytical results for an algebraic flux correction scheme for a steady convection-diffusion equation in one dimension
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F15%3A10318467" target="_blank" >RIV/00216208:11320/15:10318467 - isvavai.cz</a>
Result on the web
<a href="http://imajna.oxfordjournals.org/content/35/4/1729.full?sid=f502517d-d624-4a6c-bb0e-657aca390973" target="_blank" >http://imajna.oxfordjournals.org/content/35/4/1729.full?sid=f502517d-d624-4a6c-bb0e-657aca390973</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1093/imanum/dru041" target="_blank" >10.1093/imanum/dru041</a>
Alternative languages
Result language
angličtina
Original language name
Some analytical results for an algebraic flux correction scheme for a steady convection-diffusion equation in one dimension
Original language description
Algebraic flux correction schemes are nonlinear discretizations of convection-dominated problems. In this work, a scheme from this class is studied for a steady-state convection-diffusion equation in one dimension. It is proved that this scheme satisfiesthe discrete maximum principle. Also, as it is a nonlinear scheme, the solvability of the linear subproblems arising in a Picard iteration is studied, where positive and negative results are proved. Furthermore, the nonexistence of solutions for the nonlinear scheme is proved by means of counterexamples. Therefore, a modification of the method, which ensures the existence of a solution, is proposed. A weak version of the discrete maximum principle is proved for this modified method.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA13-00522S" target="_blank" >GA13-00522S: Qualitative analysis and numerical solution of problems of flows in generally time-dependent domains with various boundary conditions</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2015
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
IMA Journal of Numerical Analysis
ISSN
0272-4979
e-ISSN
—
Volume of the periodical
35
Issue of the periodical within the volume
4
Country of publishing house
GB - UNITED KINGDOM
Number of pages
28
Pages from-to
1729-1756
UT code for WoS article
000362826000009
EID of the result in the Scopus database
2-s2.0-84947939538