On Stepanov type differentiability theorems
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F15%3A10318980" target="_blank" >RIV/00216208:11320/15:10318980 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/s10474-014-0465-6" target="_blank" >http://dx.doi.org/10.1007/s10474-014-0465-6</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s10474-014-0465-6" target="_blank" >10.1007/s10474-014-0465-6</a>
Alternative languages
Result language
angličtina
Original language name
On Stepanov type differentiability theorems
Original language description
The main result shows that the Rademacher theorem proved by J. Lindenstrauss and D. Preiss in 2003 (which says that, for some pairs X, Y of Banach spaces, each Lipschitz f: X -> Y is Gamma-a.e. Fréchet differentiable) generalizes to the corresponding Stepanov theorem (which says that, for such X and Y, an arbitrary f: X -> Y is Fréchet differentiable at Gamma-almost all points at which f is Lipschitz). We also present an abstract approach which shows an easy way how (in some cases) a theorem of Stepanovtype (for vector functions) can be inferred from the corresponding theorem of Radamacher type. Finally we present Stepanov type differentiability theorems with the assumption of pointwise directional Lipschitzness.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GAP201%2F12%2F0436" target="_blank" >GAP201/12/0436: Theory of Real Functions and Descriptive Set Theory III</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2015
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Acta Mathematica Hungarica
ISSN
0236-5294
e-ISSN
—
Volume of the periodical
145
Issue of the periodical within the volume
1
Country of publishing house
HU - HUNGARY
Number of pages
17
Pages from-to
174-190
UT code for WoS article
000348536200014
EID of the result in the Scopus database
2-s2.0-84922078835