Matchings of quadratic size extend to long cycles in hypercubes
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F16%3A10325181" target="_blank" >RIV/00216208:11320/16:10325181 - isvavai.cz</a>
Result on the web
<a href="https://dmtcs.episciences.org/2012/pdf" target="_blank" >https://dmtcs.episciences.org/2012/pdf</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Matchings of quadratic size extend to long cycles in hypercubes
Original language description
Ruskey and Savage in 1993 asked whether every matching in a hypercube can be extended to a Hamiltonian cycle. A positive answer is known for perfect matchings, but the general case has been resolved only for matchings of linear size. In this paper we show that there is a quadratic function q(n) such that every matching in the n-dimensional hypercube of size at most q(n) may be extended to a cycle which covers at least 3/4 of the vertices.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
IN - Informatics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA14-10799S" target="_blank" >GA14-10799S: Hybercubic, graph and hypergraph structures</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2016
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Discrete Mathematics and Theoretical Computer Science
ISSN
1462-7264
e-ISSN
—
Volume of the periodical
18
Issue of the periodical within the volume
3
Country of publishing house
FR - FRANCE
Number of pages
8
Pages from-to
1-8
UT code for WoS article
—
EID of the result in the Scopus database
—