All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Gray codes extending quadratic matchings

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F19%3A10383786" target="_blank" >RIV/00216208:11320/19:10383786 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=RpudKTL58F" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=RpudKTL58F</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1002/jgt.22371" target="_blank" >10.1002/jgt.22371</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Gray codes extending quadratic matchings

  • Original language description

    Is it true that every matching in the n-dimensional hypercube Q_n can be extended to a Gray code? More than two decades have passed since Ruskey and Savage asked this question and the problem still remains open. A solution is known only in some special cases, including perfect matchings or matchings of linear size. This article shows that the answer to the Ruskey-Savage problem is affirmative for every matching of size at most n^2/16 + n/4. The proof is based on an inductive construction that extends balanced matchings in the completion of the hypercube K(Q_n) by edges of Q_n into a Hamilton cycle of K(Q_n). On the other hand, we show that for every n &gt;= 9 there is a balanced matching in K(Q_n) of size Theta(2^n/sqrt(n)) that cannot be extended in this way.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/GA14-10799S" target="_blank" >GA14-10799S: Hybercubic, graph and hypergraph structures</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Graph Theory

  • ISSN

    0364-9024

  • e-ISSN

  • Volume of the periodical

    90

  • Issue of the periodical within the volume

    2

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    14

  • Pages from-to

    123-136

  • UT code for WoS article

    000463968200002

  • EID of the result in the Scopus database

    2-s2.0-85049023638