All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Spatial distribution of defects in ultra fine grained copper prepared by high pressure torsion

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F16%3A10330773" target="_blank" >RIV/00216208:11320/16:10330773 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1088/1742-6596/674/1/012001" target="_blank" >http://dx.doi.org/10.1088/1742-6596/674/1/012001</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1088/1742-6596/674/1/012001" target="_blank" >10.1088/1742-6596/674/1/012001</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Spatial distribution of defects in ultra fine grained copper prepared by high pressure torsion

  • Original language description

    Bulk materials with ultra fine grain structure can be fabricated by severe plastic deformation. Among variety of techniques based on severe plastic deformation high pressure torsion is the most efficient method for grain refinement down to nano-scale. In torsion deformation the strain distribution across the sample is non-uniform and increases with increasing radial distance from the centre of the sample corresponding to the axis of torsional straining. Due to this reason it is very important to examine homogeneity of ultra fine grained structure of samples prepared by high pressure torsion. In the present work positron annihilation spectroscopy was employed for mapping of spatial distribution of defects in ultra fine grained copper prepared by high pressure torsion. Spatial distribution of defects was examined by means of (i) Doppler broadening using S parameter for mapping of defect density and (ii) positron lifetime spectroscopy. Spatially resolved positron annihilation studies were combined with mapping by microhardness testing. Hardness is sensitive to dislocation density due to work hardening but is practically not affected by vacancies while positron annihilation is sensitive both to dislocations and vacancies. Our investigations revealed that ultra fine grained copper contains dislocations and vacancy clusters created by agglomeration of deformation-induced vacancies. Average size of vacancy clusters increases with increasing radial distance from the centre of the sample due to higher production rate of vacancies resulting in larger clusters. During high pressure torsion deformation microhardness increases firstly at the periphery of the sample due to the highest imposed strain. With increasing number of high pressure torsion revolutions the hardness increases also in the centre and finally becomes practically uniform across the whole sample indicating the homogeneous distribution of dislocations.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

    JG - Metallurgy, metal materials

  • OECD FORD branch

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2016

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Journal of Physics: Conference Series

  • ISBN

  • ISSN

    1742-6588

  • e-ISSN

  • Number of pages

    13

  • Pages from-to

  • Publisher name

    IOP PUBLISHING LTD

  • Place of publication

    BRISTOL

  • Event location

    Kyoto

  • Event date

    Sep 14, 2014

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000382077100001