ON COMPACTLY GENERATED TORSION PAIRS AND THE CLASSIFICATION OF CO-t-STRUCTURES FOR COMMUTATIVE NOETHERIAN RINGS
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F16%3A10330939" target="_blank" >RIV/00216208:11320/16:10330939 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1090/tran/6561" target="_blank" >http://dx.doi.org/10.1090/tran/6561</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1090/tran/6561" target="_blank" >10.1090/tran/6561</a>
Alternative languages
Result language
angličtina
Original language name
ON COMPACTLY GENERATED TORSION PAIRS AND THE CLASSIFICATION OF CO-t-STRUCTURES FOR COMMUTATIVE NOETHERIAN RINGS
Original language description
We classify compactly generated co-t-structures on the derived category of a commutative noetherian ring. In order to accomplish this, we develop a theory for compactly generated Hom-orthogonal pairs (also known as torsion pairs in the literature) in triangulated categories that resembles Bousfield localization theory. Finally, we show that the category of perfect complexes over a connected commutative noetherian ring admits only the trivial co-t-structures and (de) suspensions of the canonical co-t-structure and use this to describe all silting objects in the category.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GBP201%2F12%2FG028" target="_blank" >GBP201/12/G028: Eduard Čech Institute for algebra, geometry and mathematical physics</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2016
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Transactions of the American Mathematical Society
ISSN
0002-9947
e-ISSN
—
Volume of the periodical
368
Issue of the periodical within the volume
9
Country of publishing house
US - UNITED STATES
Number of pages
37
Pages from-to
6325-6361
UT code for WoS article
000370726100011
EID of the result in the Scopus database
2-s2.0-84958817253