All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

ON COMPACTLY GENERATED TORSION PAIRS AND THE CLASSIFICATION OF CO-t-STRUCTURES FOR COMMUTATIVE NOETHERIAN RINGS

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F16%3A10330939" target="_blank" >RIV/00216208:11320/16:10330939 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1090/tran/6561" target="_blank" >http://dx.doi.org/10.1090/tran/6561</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1090/tran/6561" target="_blank" >10.1090/tran/6561</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    ON COMPACTLY GENERATED TORSION PAIRS AND THE CLASSIFICATION OF CO-t-STRUCTURES FOR COMMUTATIVE NOETHERIAN RINGS

  • Original language description

    We classify compactly generated co-t-structures on the derived category of a commutative noetherian ring. In order to accomplish this, we develop a theory for compactly generated Hom-orthogonal pairs (also known as torsion pairs in the literature) in triangulated categories that resembles Bousfield localization theory. Finally, we show that the category of perfect complexes over a connected commutative noetherian ring admits only the trivial co-t-structures and (de) suspensions of the canonical co-t-structure and use this to describe all silting objects in the category.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/GBP201%2F12%2FG028" target="_blank" >GBP201/12/G028: Eduard Čech Institute for algebra, geometry and mathematical physics</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2016

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Transactions of the American Mathematical Society

  • ISSN

    0002-9947

  • e-ISSN

  • Volume of the periodical

    368

  • Issue of the periodical within the volume

    9

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    37

  • Pages from-to

    6325-6361

  • UT code for WoS article

    000370726100011

  • EID of the result in the Scopus database

    2-s2.0-84958817253