All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Compactly generated t-structures in the derived category of a commutative ring

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F20%3A00524450" target="_blank" >RIV/67985840:_____/20:00524450 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1007/s00209-019-02349-y" target="_blank" >https://doi.org/10.1007/s00209-019-02349-y</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s00209-019-02349-y" target="_blank" >10.1007/s00209-019-02349-y</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Compactly generated t-structures in the derived category of a commutative ring

  • Original language description

    We classify all compactly generated t-structures in the unbounded derived category of an arbitrary commutative ring, generalizing the result of Alonso Tarrío et al. (J Algebra 324(3):313–346, 2010) for noetherian rings. More specifically, we establish a bijective correspondence between the compactly generated t-structures and infinite filtrations of the Zariski spectrum by Thomason subsets. Moreover, we show that in the case of a commutative noetherian ring, any bounded below homotopically smashing t-structure is compactly generated. As a consequence, all cosilting complexes are classified up to equivalence.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Mathematische Zeitschrift

  • ISSN

    0025-5874

  • e-ISSN

  • Volume of the periodical

    295

  • Issue of the periodical within the volume

    1-2

  • Country of publishing house

    DE - GERMANY

  • Number of pages

    26

  • Pages from-to

    47-72

  • UT code for WoS article

    000534474400002

  • EID of the result in the Scopus database

    2-s2.0-85068122446