Compactly generated t-structures in the derived category of a commutative ring
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F20%3A00524450" target="_blank" >RIV/67985840:_____/20:00524450 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1007/s00209-019-02349-y" target="_blank" >https://doi.org/10.1007/s00209-019-02349-y</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00209-019-02349-y" target="_blank" >10.1007/s00209-019-02349-y</a>
Alternative languages
Result language
angličtina
Original language name
Compactly generated t-structures in the derived category of a commutative ring
Original language description
We classify all compactly generated t-structures in the unbounded derived category of an arbitrary commutative ring, generalizing the result of Alonso Tarrío et al. (J Algebra 324(3):313–346, 2010) for noetherian rings. More specifically, we establish a bijective correspondence between the compactly generated t-structures and infinite filtrations of the Zariski spectrum by Thomason subsets. Moreover, we show that in the case of a commutative noetherian ring, any bounded below homotopically smashing t-structure is compactly generated. As a consequence, all cosilting complexes are classified up to equivalence.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Mathematische Zeitschrift
ISSN
0025-5874
e-ISSN
—
Volume of the periodical
295
Issue of the periodical within the volume
1-2
Country of publishing house
DE - GERMANY
Number of pages
26
Pages from-to
47-72
UT code for WoS article
000534474400002
EID of the result in the Scopus database
2-s2.0-85068122446