All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Efficient Knot Discrimination via Quandle Coloring with SAT and #-SAT

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F16%3A10331268" target="_blank" >RIV/00216208:11320/16:10331268 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1007/978-3-319-42432-3_7" target="_blank" >http://dx.doi.org/10.1007/978-3-319-42432-3_7</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-319-42432-3_7" target="_blank" >10.1007/978-3-319-42432-3_7</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Efficient Knot Discrimination via Quandle Coloring with SAT and #-SAT

  • Original language description

    We apply SAT and #-SAT to problems of computational topology: knot detection and recognition. Quandle coloring can be viewed as associations of elements of algebraic structures, called quandles, to arcs of knot diagrams such that certain algebraic relations hold at each crossing. The existence of a coloring (called colorability) and the number of colorings of a knot by a quandle are knot invariants that can be used to distinguish knots. We realise coloring instances as SAT and #-SAT instances, and produce experimental data demonstrating that a SAT-based approach to colorability is a practically efficient method for knot detection and #-SAT can be utilised for knot recognition.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/GA13-01832S" target="_blank" >GA13-01832S: General algebra and its connections to computer science</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2016

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    MATHEMATICAL SOFTWARE, ICMS 2016

  • ISBN

    978-3-319-42432-3

  • ISSN

    0302-9743

  • e-ISSN

  • Number of pages

    8

  • Pages from-to

    51-58

  • Publisher name

    SPRINGER INT PUBLISHING AG

  • Place of publication

    CHAM

  • Event location

    Zuse Inst, Berlin

  • Event date

    Jul 11, 2016

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000387431800007