All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Commutator theory for racks and quandles

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10436396" target="_blank" >RIV/00216208:11320/21:10436396 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=T7cU82kQbl" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=T7cU82kQbl</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.2969/jmsj/83168316" target="_blank" >10.2969/jmsj/83168316</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Commutator theory for racks and quandles

  • Original language description

    We adapt the commutator theory of universal algebra to the particular setting of racks and quandles, exploiting a Galois connection between congruences and certain normal subgroups of the displacement group. Congruence properties, such as abelianness and centrality, are reflected by the corresponding relative displacement groups, and the global properties, solvability and nilpotence, are reflected by the properties of the whole displacement group. To show the new tool in action, we present three applications: nonexistence theorems for quandles (no connected involutory quandles of order 2(k), no latin quandles of order equivalent to 2 (mod 4)), a non-colorability theorem (knots with trivial Alexander polynomial are not colorable by solvable quandles; in particular, by finite latin quandles), and a strengthening of Glauberman&apos;s results on Bruck loops of odd order.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GA18-20123S" target="_blank" >GA18-20123S: Expanding the Scope of Universal Algebra</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of the Mathematical Society of Japan

  • ISSN

    0025-5645

  • e-ISSN

  • Volume of the periodical

    2021

  • Issue of the periodical within the volume

    73

  • Country of publishing house

    JP - JAPAN

  • Number of pages

    35

  • Pages from-to

    41-75

  • UT code for WoS article

    000612519000002

  • EID of the result in the Scopus database

    2-s2.0-85101004276