All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Abelian congruences and solvability in Moufang loops

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3A10471877" target="_blank" >RIV/00216208:11320/23:10471877 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=E4sYlKZSbP" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=E4sYlKZSbP</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.jalgebra.2023.03.001" target="_blank" >10.1016/j.jalgebra.2023.03.001</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Abelian congruences and solvability in Moufang loops

  • Original language description

    In groups, an abelian normal subgroup induces an abelian congruence. We construct a class of centrally nilpotent Moufang loops containing an abelian normal subloop that does not induce an abelian congruence. On the other hand, we prove that in 6-divisible Moufang loops, every abelian normal subloop induces an abelian congruence. In loops, congruence solvability adopted from the universal -algebraic commutator theory of congruence modular varieties is strictly stronger than classical solvability adopted from group theory. It is an open problem whether the two notions of solvability coincide in Moufang loops. We prove that they coincide in 6-divisible Moufang loops and in Moufang loops of odd order. In fact, we show that every Moufang loop of odd order is congruence solvable, thus strengthening Glauberman&apos;s Odd Order Theorem for Moufang loops. (c) 2023 Elsevier Inc. All rights reserved.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/LTAUSA19070" target="_blank" >LTAUSA19070: Commutators, quasigroups and Yang Baxter equation</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Algebra

  • ISSN

    0021-8693

  • e-ISSN

    1090-266X

  • Volume of the periodical

    624

  • Issue of the periodical within the volume

    June

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    24

  • Pages from-to

    17-40

  • UT code for WoS article

    000956826000001

  • EID of the result in the Scopus database

    2-s2.0-85150027161