Abelian Extensions and Solvable Loops
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F14%3A10287561" target="_blank" >RIV/00216208:11320/14:10287561 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/s00025-014-0382-6" target="_blank" >http://dx.doi.org/10.1007/s00025-014-0382-6</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00025-014-0382-6" target="_blank" >10.1007/s00025-014-0382-6</a>
Alternative languages
Result language
angličtina
Original language name
Abelian Extensions and Solvable Loops
Original language description
Based on the recent development of commutator theory for loops, we provide both syntactic and semantic characterization of abelian normal subloops. We highlight the analogies between well known central extensions and central nilpotence on one hand, and abelian extensions and congruence solvability on the other hand. In particular, we show that a loop is congruence solvable (that is, an iterated abelian extension of commutative groups) if and only if it is not Boolean complete, reaffirming the connectionbetween computational complexity and solvability. Finally, we briefly discuss relations between nilpotence and solvability for loops and the associated multiplication groups and inner mapping groups.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA13-01832S" target="_blank" >GA13-01832S: General algebra and its connections to computer science</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2014
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Results in Mathematics
ISSN
1422-6383
e-ISSN
—
Volume of the periodical
66
Issue of the periodical within the volume
3-4
Country of publishing house
CH - SWITZERLAND
Number of pages
18
Pages from-to
367-384
UT code for WoS article
000344346500006
EID of the result in the Scopus database
—