Subquandles of affine quandles
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60460709%3A41310%2F18%3A76845" target="_blank" >RIV/60460709:41310/18:76845 - isvavai.cz</a>
Alternative codes found
RIV/00216208:11320/18:10383373
Result on the web
<a href="http://dx.doi.org/10.1016/j.jalgebra.2018.06.001" target="_blank" >http://dx.doi.org/10.1016/j.jalgebra.2018.06.001</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jalgebra.2018.06.001" target="_blank" >10.1016/j.jalgebra.2018.06.001</a>
Alternative languages
Result language
angličtina
Original language name
Subquandles of affine quandles
Original language description
A quandle will be called quasi-affine, if it embeds into an affine quandle. Our main result is a characterization of quasi-affine quandles, by group-theoretic properties of their displacement group, by a universal algebraic condition coming from the commutator theory, and by an explicit construction over abelian groups. As a consequence, we obtain efficient algorithms for recognizing affine and quasi-affine quandles, and we enumerate small quasi-affine quandles. We also prove that the abelian implies quasi-affine problem of universal algebra has affirmative answer for the class of quandles.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA13-01832S" target="_blank" >GA13-01832S: General algebra and its connections to computer science</a><br>
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Algebra
ISSN
0021-8693
e-ISSN
0021-8693
Volume of the periodical
510
Issue of the periodical within the volume
15
Country of publishing house
GB - UNITED KINGDOM
Number of pages
30
Pages from-to
259-288
UT code for WoS article
000440962300008
EID of the result in the Scopus database
2-s2.0-85048314957