PRESERVING AFFINE BAIRE CLASSES BY PERFECT AFFINE MAPS
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F16%3A10331928" target="_blank" >RIV/00216208:11320/16:10331928 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.2989/16073606.2015.1073813" target="_blank" >http://dx.doi.org/10.2989/16073606.2015.1073813</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.2989/16073606.2015.1073813" target="_blank" >10.2989/16073606.2015.1073813</a>
Alternative languages
Result language
angličtina
Original language name
PRESERVING AFFINE BAIRE CLASSES BY PERFECT AFFINE MAPS
Original language description
Let phi: X -> Y be an affine continuous surjection between compact convex sets. Suppose that the canonical copy of the space of real -valued Aline continuous functions on Y in the space of reat-valued affine continuous functions on X is complemented. We show that if F is a topological vector space, then f : Y -> F is of affine Baire class a whenever the composition f o y is of affine Baire class a. This abstract result is applied to extend known results on affine Baire classes of strongly affine Baire mappings.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GAP201%2F12%2F0290" target="_blank" >GAP201/12/0290: Topological and geometrical properties of Banach spaces and operator algebras</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2016
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Quaestiones Mathematicae
ISSN
1607-3606
e-ISSN
—
Volume of the periodical
39
Issue of the periodical within the volume
3
Country of publishing house
ZA - SOUTH AFRICA
Number of pages
12
Pages from-to
351-362
UT code for WoS article
000377899400005
EID of the result in the Scopus database
2-s2.0-84949781842