Baire classes of affine vector-valued functions
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F16%3A10331934" target="_blank" >RIV/00216208:11320/16:10331934 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.4064/sm8278-5-2016" target="_blank" >http://dx.doi.org/10.4064/sm8278-5-2016</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.4064/sm8278-5-2016" target="_blank" >10.4064/sm8278-5-2016</a>
Alternative languages
Result language
angličtina
Original language name
Baire classes of affine vector-valued functions
Original language description
We investigate Baire classes of strongly affine mappings with values in Frechet spaces. We show, in particular, that the validity of the vector-valued Mokobodzki result on affine functions of the first Baire class is related to the approximation property of the range space. We further extend several results known for scalar functions on Choquet simplices or on dual balls of L-1-preduals to the vector-valued case. This concerns, in particular, affine classes of strongly affine Baire mappings, the abstract Dirichlet problem and the weak Dirichlet problem for Baire mappings. Some of these results have weaker conclusions than their scalar versions. We also establish an affine version of the Jayne Rogers selection theorem.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GAP201%2F12%2F0290" target="_blank" >GAP201/12/0290: Topological and geometrical properties of Banach spaces and operator algebras</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2016
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Studia Mathematica
ISSN
0039-3223
e-ISSN
—
Volume of the periodical
233
Issue of the periodical within the volume
3
Country of publishing house
PL - POLAND
Number of pages
51
Pages from-to
227-277
UT code for WoS article
000383524600003
EID of the result in the Scopus database
2-s2.0-84977604434