On Markushevich bases in preduals of von Neumann algebras
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F16%3A10331930" target="_blank" >RIV/00216208:11320/16:10331930 - isvavai.cz</a>
Alternative codes found
RIV/68407700:21230/16:00302144
Result on the web
<a href="http://dx.doi.org/10.1007/s11856-016-1365-y" target="_blank" >http://dx.doi.org/10.1007/s11856-016-1365-y</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s11856-016-1365-y" target="_blank" >10.1007/s11856-016-1365-y</a>
Alternative languages
Result language
angličtina
Original language name
On Markushevich bases in preduals of von Neumann algebras
Original language description
We prove that the predual of any von Neumann algebra is 1-Plichko, i.e., it has a countably 1-norming Markushevich basis. This answers a question of the third author who proved the same for preduals of semifinite von Neumann algebras. As a corollary we obtain an easier proof of a result of U. Haagerup that the predual of any von Neumann algebra enjoys the separable complementation property. We further prove that the selfadjoint part of the predual is 1-Plichko as well.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GAP201%2F12%2F0290" target="_blank" >GAP201/12/0290: Topological and geometrical properties of Banach spaces and operator algebras</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2016
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Israel Journal of Mathematics
ISSN
0021-2172
e-ISSN
—
Volume of the periodical
214
Issue of the periodical within the volume
2
Country of publishing house
IL - THE STATE OF ISRAEL
Number of pages
18
Pages from-to
867-884
UT code for WoS article
000382866000015
EID of the result in the Scopus database
2-s2.0-84986273982