Maximum efficiency of low-dissipation heat engines at arbitrary power
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F16%3A10332054" target="_blank" >RIV/00216208:11320/16:10332054 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1088/1742-5468/2016/07/073204" target="_blank" >http://dx.doi.org/10.1088/1742-5468/2016/07/073204</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1088/1742-5468/2016/07/073204" target="_blank" >10.1088/1742-5468/2016/07/073204</a>
Alternative languages
Result language
angličtina
Original language name
Maximum efficiency of low-dissipation heat engines at arbitrary power
Original language description
We investigate maximum efficiency at a given power for low-dissipation heat engines. Close to maximum power, the maximum gain in efficiency scales as a square root of relative loss in power and this scaling is universal for a broad class of systems. For low-dissipation engines, we calculate the maximum gain in efficiency for an arbitrary fixed power. We show that engines working close to maximum power can operate at considerably larger efficiency compared to the efficiency at maximum power. Furthermore, we introduce universal bounds on maximum efficiency at a given power for lowdissipation heat engines. These bounds represent direct generalization of the bounds on efficiency at maximum power obtained by Esposito et al (2010 Phys. Rev. Lett. 105 150603). We derive the bounds analytically in the regime close to maximum power and for small power values. For the intermediate regime we present strong numerical evidence for the validity of the bounds.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BE - Theoretical physics
OECD FORD branch
—
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2016
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Statistical Mechanics: Theory and Experiment
ISSN
1742-5468
e-ISSN
—
Volume of the periodical
Neuveden
Issue of the periodical within the volume
July
Country of publishing house
GB - UNITED KINGDOM
Number of pages
15
Pages from-to
—
UT code for WoS article
000381379800011
EID of the result in the Scopus database
2-s2.0-85014428851