Maximum efficiency of absorption refrigerators at arbitrary cooling power
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10436617" target="_blank" >RIV/00216208:11320/21:10436617 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=DRM80tfDx7" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=DRM80tfDx7</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1103/PhysRevE.103.052125" target="_blank" >10.1103/PhysRevE.103.052125</a>
Alternative languages
Result language
angličtina
Original language name
Maximum efficiency of absorption refrigerators at arbitrary cooling power
Original language description
We consider absorption refrigerators consisting of simultaneously operating Carnot-type heat engine and refrigerator. Their maximum efficiency at given power (MEGP) is given by the product of MEGPs for the internal engine and refrigerator. The only subtlety of the derivation lies in the fact that the maximum cooling power of the absorption refrigerator is not limited just by the maximum power of the internal refrigerator, but, due to the first law, also by that of the internal engine. As a specific example, we consider the simultaneous absorption refrigerators composed of low-dissipation (LD) heat engines and refrigerators, for which the expressions for MEGPs are known. The derived expression for maximum efficiency implies bounds on the MEGP of LD absorption refrigerators. It also implies that a slight decrease in power of the absorption refrigerator from its maximum value results in a large nonlinear increase in efficiency, observed in heat engines, whenever the ratio of maximum powers of the internal engine and the refrigerator does not diverge. Otherwise, the increase in efficiency is linear as observed in LD refrigerators. Thus, in all practical situations, the efficiency of LD absorption refrigerators significantly increases when their cooling power is slightly decreased from its maximum.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10300 - Physical sciences
Result continuities
Project
<a href="/en/project/GC20-02955J" target="_blank" >GC20-02955J: Dynamics and thermodynamics in artificial and natural active systems with delay</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Physical Review E
ISSN
2470-0045
e-ISSN
—
Volume of the periodical
103
Issue of the periodical within the volume
5
Country of publishing house
US - UNITED STATES
Number of pages
11
Pages from-to
052125
UT code for WoS article
000655980700002
EID of the result in the Scopus database
2-s2.0-85106554032