On power-law fluids with the power-law index proportional to the pressure
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F16%3A10332678" target="_blank" >RIV/00216208:11320/16:10332678 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1016/j.aml.2016.07.007" target="_blank" >http://dx.doi.org/10.1016/j.aml.2016.07.007</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.aml.2016.07.007" target="_blank" >10.1016/j.aml.2016.07.007</a>
Alternative languages
Result language
angličtina
Original language name
On power-law fluids with the power-law index proportional to the pressure
Original language description
In this short note we study special unsteady flows of a fluid whose viscosity depends on both the pressure and the shear rate. Here we consider an interesting dependence of the viscosity on the pressure and the shear rate; a power-law of the shear rate wherein the exponent depends on the pressure. The problem is important from the perspective of fluid dynamics in that we obtain solutions to a technologically relevant problem, and also from the point of view of mathematics as the analysis of the problem rests on the theory of spaces with variable exponents. We use the theory to prove the existence of solutions to generalizations of Stokes' first and second problem.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/LL1202" target="_blank" >LL1202: Implicitly constituted material models: from theory through model reduction to efficient numerical methods</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2016
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Applied Mathematics Letters
ISSN
0893-9659
e-ISSN
—
Volume of the periodical
62
Issue of the periodical within the volume
December
Country of publishing house
US - UNITED STATES
Number of pages
6
Pages from-to
118-123
UT code for WoS article
000384781400017
EID of the result in the Scopus database
2-s2.0-84984827789