All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Hamiltonian Laceability of Hypercubes Without Isometric Subgraphs

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F16%3A10332705" target="_blank" >RIV/00216208:11320/16:10332705 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1007/s00373-016-1728-5" target="_blank" >http://dx.doi.org/10.1007/s00373-016-1728-5</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s00373-016-1728-5" target="_blank" >10.1007/s00373-016-1728-5</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Hamiltonian Laceability of Hypercubes Without Isometric Subgraphs

  • Original language description

    Locke conjectured that the n-dimensional hypercube Q(n) with the set F of 2k removed vertices half from each bipartition set, where n >= k + 2 and k > 1, is Hamiltonian. So far the conjecture remains open although partial results are known; some of them with additional conditions on the set F. We explore Hamiltonian properties of Q(n) - F if the set of faulty vertices F forms either an isometric cycle of Q(n) or an isometric tree of Q(n). We study a more general problem. A bipartite graph G is Hamiltonian laceable if either (a) its bipartition sets are of equal size and for each pair of vertices x, y from different bipartition sets there exists a Hamiltonian path between x and y, or (b) its bipartition sets differ in sizes by one and for each pair of vertices x, y from the larger bipartition set there exists a Hamiltonian path between x and y. In particular, we show that if C is an isometric cycle in Q(n) for n >= 5, then Q(n) - V(C) is Hamiltonian laceable. This allows us to remove up to 2n faulty vertices. Furthermore, if T is balanced isometric tree in Q(n), then for n >= 4 the graph Q(n) - V(T) is Hamiltonian laceable. Finally, if T is an almost-balanced isometric tree in Q(n), then for n >= 5 the graph Q(n) - V(T) is Hamiltonian laceable. Thus our results support Locke hypothesis.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/GA14-10799S" target="_blank" >GA14-10799S: Hybercubic, graph and hypergraph structures</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2016

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Graphs and Combinatorics

  • ISSN

    0911-0119

  • e-ISSN

  • Volume of the periodical

    32

  • Issue of the periodical within the volume

    6

  • Country of publishing house

    JP - JAPAN

  • Number of pages

    34

  • Pages from-to

    2591-2624

  • UT code for WoS article

    000388830300026

  • EID of the result in the Scopus database

    2-s2.0-84979590760