Incomparable compactifications of the ray with Peano continuum as remainder
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F16%3A10333204" target="_blank" >RIV/00216208:11320/16:10333204 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1016/j.topol.2016.05.008" target="_blank" >http://dx.doi.org/10.1016/j.topol.2016.05.008</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.topol.2016.05.008" target="_blank" >10.1016/j.topol.2016.05.008</a>
Alternative languages
Result language
angličtina
Original language name
Incomparable compactifications of the ray with Peano continuum as remainder
Original language description
We prove that for every fixed nondegenerate Peano continuum X there exists a continuum-sized family of compactifications of the ray with X as remainder that is pairwise incomparable by continuous mappings.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GP14-06989P" target="_blank" >GP14-06989P: Quasiorder of curves with respect to open, monotone and confluent mappings</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2016
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Topology and its Applications
ISSN
0166-8641
e-ISSN
—
Volume of the periodical
208
Issue of the periodical within the volume
léto
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
13
Pages from-to
93-105
UT code for WoS article
000378969700008
EID of the result in the Scopus database
2-s2.0-84969760951