The topology and dynamics of the hyperspaces of normal fuzzy sets and their inverse limit spaces
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17610%2F17%3AA1801F9G" target="_blank" >RIV/61988987:17610/17:A1801F9G - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1016/j.fss.2016.11.006" target="_blank" >http://dx.doi.org/10.1016/j.fss.2016.11.006</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.fss.2016.11.006" target="_blank" >10.1016/j.fss.2016.11.006</a>
Alternative languages
Result language
angličtina
Original language name
The topology and dynamics of the hyperspaces of normal fuzzy sets and their inverse limit spaces
Original language description
Given a compact and connected metric space (continuum) $X$, we study topological and dynamical properties of the hyperspace of normal fuzzy sets $mathbb{F}^1(X)$ equipped with the Hausdorff, endograph or sendograph metric. Among the many results we show that it is contractible, path connected, locally contractible, locally path connected, locally simply connected and locally connected. For the endograph metric the hyperspace $mathbb{F}^1(X)$ is a continuum, and then for a topological graph $X$ we show how, using the inverse limit approach of Barge and Martin, the inverse limit of a fuzzy dynamical system on $X$ can be realized as an attractor of a fuzzy dynamical system on a manifold.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/LQ1602" target="_blank" >LQ1602: IT4Innovations excellence in science</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
FUZZY SET SYST
ISSN
0165-0114
e-ISSN
—
Volume of the periodical
—
Issue of the periodical within the volume
321
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
11
Pages from-to
90-100
UT code for WoS article
000402482200006
EID of the result in the Scopus database
2-s2.0-85008196660