On recurrence and entropy in the hyperspace of continua in dimension one
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17610%2F23%3AA2402NG1" target="_blank" >RIV/61988987:17610/23:A2402NG1 - isvavai.cz</a>
Result on the web
<a href="https://www.impan.pl/pl/wydawnictwa/czasopisma-i-serie-wydawnicze/fundamenta-mathematicae/all/263/1/115119/on-recurrence-and-entropy-in-hyperspace-of-continua-in-dimension-one" target="_blank" >https://www.impan.pl/pl/wydawnictwa/czasopisma-i-serie-wydawnicze/fundamenta-mathematicae/all/263/1/115119/on-recurrence-and-entropy-in-hyperspace-of-continua-in-dimension-one</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.4064/fm235-4-2023" target="_blank" >10.4064/fm235-4-2023</a>
Alternative languages
Result language
angličtina
Original language name
On recurrence and entropy in the hyperspace of continua in dimension one
Original language description
We show that if G is a topological graph, and f:G→G is a continuous map, then the induced map f˜ defined on the hyperspace C(G) of all connected subsets of G by the natural formula f˜(C)=f(C) carries the same entropy as f. It is well known that this does not hold on the larger hyperspace of all compact subsets. Also negative examples were given for the hyperspace C(X) on some continua X, including dendrites.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
FUND MATH
ISSN
0016-2736
e-ISSN
—
Volume of the periodical
—
Issue of the periodical within the volume
Jul
Country of publishing house
PL - POLAND
Number of pages
27
Pages from-to
23-50
UT code for WoS article
001034084400001
EID of the result in the Scopus database
2-s2.0-85177495833