Continuous extension operators and convexity
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F11%3A00373152" target="_blank" >RIV/67985840:_____/11:00373152 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1016/j.na.2011.07.013" target="_blank" >http://dx.doi.org/10.1016/j.na.2011.07.013</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.na.2011.07.013" target="_blank" >10.1016/j.na.2011.07.013</a>
Alternative languages
Result language
angličtina
Original language name
Continuous extension operators and convexity
Original language description
Given a nonempty closed subset A of a Hilbert space X, we denote by L(A) the space of all bounded Lipschitz mappings from A into X, equipped with the supremum norm. We show that there is a continuous mapping F(c) : L(A) -> L(X) such that for each g is anelement of L(A), F(c) (g)vertical bar(A) = g, Lip(F(c)(g)) = Lip(g), and F(c) (g)(X) subset of clco(g(A)). We also prove that the corresponding set-valued extension operator is lower semicontinuous.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/IAA100190901" target="_blank" >IAA100190901: Topological and geometric structures in Banach spaces</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2011
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Nonlinear Analysis: Theory, Methods & Applications
ISSN
0362-546X
e-ISSN
—
Volume of the periodical
74
Issue of the periodical within the volume
18
Country of publishing house
GB - UNITED KINGDOM
Number of pages
4
Pages from-to
6907-6910
UT code for WoS article
000295714200008
EID of the result in the Scopus database
—