All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

A Note on the Number of General 4-holes in (Perturbed) Grids

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F16%3A10333360" target="_blank" >RIV/00216208:11320/16:10333360 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1007/978-3-319-48532-4_1" target="_blank" >http://dx.doi.org/10.1007/978-3-319-48532-4_1</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-319-48532-4_1" target="_blank" >10.1007/978-3-319-48532-4_1</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    A Note on the Number of General 4-holes in (Perturbed) Grids

  • Original language description

    Considering a variation of the classical Erdos-Szekeres type problems, we count the number of general 4-holes ( not necessarily convex, empty 4-gons) in squared Horton sets of size root nx root n. Improving on previous upper and lower bounds we show that this number is Theta(n(2) log n), which constitutes the currently best upper bound on minimizing the number of general 4-holes for any set of n points in the plane. To obtain the improved bounds, we prove a result of independent interest. We show that Sigma(n)(d=1) phi(d)/d(2) = Theta(log n), where phi(d) is Euler's phifunction, the number of positive integers less than d which are relatively prime to d. This arithmetic function is also called Euler's totient function and plays a role in number theory and cryptography.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2016

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    DISCRETE AND COMPUTATIONAL GEOMETRY AND GRAPHS, JCDCGG 2015

  • ISBN

    978-3-319-48532-4

  • ISSN

    0302-9743

  • e-ISSN

  • Number of pages

    12

  • Pages from-to

    1-12

  • Publisher name

    SPRINGER INT PUBLISHING AG

  • Place of publication

    CHAM

  • Event location

    Kyoto Univ, Kyoto

  • Event date

    Sep 14, 2015

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000389794000001