All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Tight Bounds on the Expected Number of Holes in Random Point Sets

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10436870" target="_blank" >RIV/00216208:11320/21:10436870 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1007/978-3-030-83823-2_64" target="_blank" >https://doi.org/10.1007/978-3-030-83823-2_64</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-030-83823-2_64" target="_blank" >10.1007/978-3-030-83823-2_64</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Tight Bounds on the Expected Number of Holes in Random Point Sets

  • Original language description

    For integers $d geq 2$ and $k geq d+1$, a emph{$k$-hole} in a set $S$ of points in general position in $mathbb{R}^d$ is a $k$-tuple of points from $S$ in convex position such that the interior of their convex hull does not contain any point from $S$. For a convex body $K subseteq mathbb{R}^d$ of unit $d$-dimensional volume, we study the expected number $EH^K_{d,k}(n)$ of $k$-holes in a set of $n$ points drawn uniformly and independently at random from $K$. We prove an asymptotically tight lower bound on $EH^K_{d,k}(n)$ by showing that, for all fixed integers $d geq 2$ and $kgeq d+1$, the number $EH_{d,k}^K(n)$ is at least $Omega(n^d)$. For some small holes, we even determine the leading constant $lim_{n to infty}n^{-d}EH^K_{d,k}(n)$ exactly. We improve the currently best known lower bound on $lim_{n to infty}n^{-d}EH^K_{d,d+1}(n)$ by Reitzner and Temesvari~(2019) and we show that our new bound is tight for $d leq 3$. In the plane, we show that the constant $lim_{n to infty}n^{-2}EH^K_{2,k}(n)$ is independent of $K$ for every fixed $k geq 3$ and we compute it exactly for $k=4$, improving earlier estimates by Fabila-Monroy, Huemer, and Mitsche~(2015) and by the authors~(2020).

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GA18-19158S" target="_blank" >GA18-19158S: Algorithmic, structural and complexity aspects of geometric and other configurations</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Extended Abstracts EuroComb 2021

  • ISBN

    978-3-030-83823-2

  • ISSN

  • e-ISSN

  • Number of pages

    6

  • Pages from-to

    411-416

  • Publisher name

    Springer International Publishing

  • Place of publication

    neuveden

  • Event location

    Barcelona

  • Event date

    Sep 6, 2021

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article