Tight bounds on the expected number of holes in random point sets
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3A10453242" target="_blank" >RIV/00216208:11320/23:10453242 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=KZWct6ysrl" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=KZWct6ysrl</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/rsa.21088" target="_blank" >10.1002/rsa.21088</a>
Alternative languages
Result language
angličtina
Original language name
Tight bounds on the expected number of holes in random point sets
Original language description
For integers $d geq 2$ and $k geq d+1$, a emph{$k$-hole} in a set $S$ of points in general position in $mathbb{R}^d$ is a $k$-tuple of points from $S$ in convex position such that the interior of their convex hull does not contain any point from $S$. For a convex body $K subseteq mathbb{R}^d$ of unit $d$-dimensional volume, we study the expected number $EH^K_{d,k}(n)$ of $k$-holes in a set of $n$ points drawn uniformly and independently at random from $K$.We prove an asymptotically tight lower bound on $EH^K_{d,k}(n)$ by showing that, for all fixed integers $d geq 2$ and $kgeq d+1$, the number $EH_{d,k}^K(n)$ is at least $Omega(n^d)$. For some small holes, we even determine the leading constant $lim_{n to infty}n^{-d}EH^K_{d,k}(n)$ exactly. We improve the currently best known lower bound on $lim_{n to infty}n^{-d}EH^K_{d,d+1}(n)$ by Reitzner and Temesvari~(2019). In the plane, we show that the constant $lim_{n to infty}n^{-2}EH^K_{2,k}(n)$ is independent of $K$ for every fixed $k geq 3$ and we compute it exactly for $k=4$, improving earlier estimates by Fabila-Monroy, Huemer, and Mitsche~(2015) and by the authors~(2020).
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/GA21-32817S" target="_blank" >GA21-32817S: Algorithmic, structural and complexity aspects of geometric configurations</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Random Structures and Algorithms
ISSN
1042-9832
e-ISSN
—
Volume of the periodical
2023
Issue of the periodical within the volume
62
Country of publishing house
US - UNITED STATES
Number of pages
23
Pages from-to
29-51
UT code for WoS article
000789578600001
EID of the result in the Scopus database
2-s2.0-85128513177