All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Tight bounds on the expected number of holes in random point sets

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3A10453242" target="_blank" >RIV/00216208:11320/23:10453242 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=KZWct6ysrl" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=KZWct6ysrl</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1002/rsa.21088" target="_blank" >10.1002/rsa.21088</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Tight bounds on the expected number of holes in random point sets

  • Original language description

    For integers $d geq 2$ and $k geq d+1$, a emph{$k$-hole} in a set $S$ of points in general position in $mathbb{R}^d$ is a $k$-tuple of points from $S$ in convex position such that the interior of their convex hull does not contain any point from $S$. For a convex body $K subseteq mathbb{R}^d$ of unit $d$-dimensional volume, we study the expected number $EH^K_{d,k}(n)$ of $k$-holes in a set of $n$ points drawn uniformly and independently at random from $K$.We prove an asymptotically tight lower bound on $EH^K_{d,k}(n)$ by showing that, for all fixed integers $d geq 2$ and $kgeq d+1$, the number $EH_{d,k}^K(n)$ is at least $Omega(n^d)$. For some small holes, we even determine the leading constant $lim_{n to infty}n^{-d}EH^K_{d,k}(n)$ exactly. We improve the currently best known lower bound on $lim_{n to infty}n^{-d}EH^K_{d,d+1}(n)$ by Reitzner and Temesvari~(2019). In the plane, we show that the constant $lim_{n to infty}n^{-2}EH^K_{2,k}(n)$ is independent of $K$ for every fixed $k geq 3$ and we compute it exactly for $k=4$, improving earlier estimates by Fabila-Monroy, Huemer, and Mitsche~(2015) and by the authors~(2020).

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/GA21-32817S" target="_blank" >GA21-32817S: Algorithmic, structural and complexity aspects of geometric configurations</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Random Structures and Algorithms

  • ISSN

    1042-9832

  • e-ISSN

  • Volume of the periodical

    2023

  • Issue of the periodical within the volume

    62

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    23

  • Pages from-to

    29-51

  • UT code for WoS article

    000789578600001

  • EID of the result in the Scopus database

    2-s2.0-85128513177